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MiniBooNE

‣ Primary physics goal: neutrino oscillations, designed to test an anomalous signal 
in data from LSND

4

‣ Along the way our 
secondary physics goals of ν 
cross sections have become 
increasingly interesting

‣ Successful 10-year run, 
HUGE data set in both 
neutrino and anti-neutrino 
running (thanks AD!)

MiniBooNE crosses the finish line
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Why do we care?

‣ One of the few concrete results not predicted by the Standard Model: ν’s oscillate!

5

νμ νe ντ

Confirmation with Super-K,             
K2K and MINOS data!

Confirmation with SNO,       
Kamland data!

‣ In just the last 14 
years, two 
independent 
mass splittings 
and three mixing 
angles have been 
confirmed
‣ observations of 

both artificial and 
natural ν sources  
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Why do we care?

‣ Two-neutrino approximation for νβ to appear from a source of να:

‣ (Of course) ν oscillations observed with analysis of ν interactions.  To understand 
the rate (~θ) and the energy dependence (~Δm2) of oscillations, must decouple 
their signature from ν flux and cross-section effects (typically each are also energy 
dependent!)

‣ If ν source is artificial, spectrum usually constrained by using two-detector setup, 
one close to the source to constrain the nominal rate as f(Eν), one placed at a 
distance affording sensitivity to the (Δm2,θ) of interest

6
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‣ If second detector not available, can still make appearance (νe) measurements 
based on constraints from control sample (νμ) 
- MiniBooNE analysis strategy, also currently the favored LBNE phase 1 config.

‣ Single-detector expt’s naturally more sensitive to ν cross sections.  MiniBooNE 
observes νμ beam of ~GeV.  Modern CC inclusive cross section knowledge:

Single-detector expt’s

7

‣ Sparse and uncertain 
measurements!
- Particularly for ν’s - first          

⟨Eν⟩ < 1 GeV charged current σ 
today!

MiniBooNE range
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‣ Due to simple multiplicity and ability to reconstruct ν energy based solely on 
lepton kinematics, charged current quasi-elastic interactions are the preferred 
channel for osc. measurements

‣ Eν recovery assumes interaction with at-rest, independently acting nucleons, 
regardless of nuclear material 

CCQE - the golden channel

8

proton!

neutron 

νμ

μ-

P (⌫↵ ! ⌫↵) = 1� sin22✓ sin2

✓
�m2L

4E

◆

  

€ 

Eν
QE =

2(M − EB )E µ − (EB
2 − 2MEB +mµ

2 + ΔM 2 )
2[(M − EB ) − E µ + pµ cosθ µ ]

MiniBooNE only reconstructs outgoing μ
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‣ Using CVC, vector and tensor form 
factors measured in (e,e’) data

‣ Axial form factor FA typically 
assumed to have dipole form

‣ gA measured from β decay, that 
leaves axial mass MA to be 
determined

CCQE Expectations

‣ Expectation starts with calculation for free nucleons: 

9

Phys. Rep. 3, 261 (1972)

n p

νμ μ-

W

u
d
d

u
d
u
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‣ MA measured for decades in ν 
scattering on mostly Z = 1 targets 

with a variety of techniques 
- both total cross section and shape of Q2 

strongly influenced by MA

‣ Global average to these data find                       
MA = 1.03 ± 0.02 GeV 
- fit driven by light-target expt’s

Bernard et al 2002 J. Phys. G: Nucl. Part. Phys. 28 R1

MA Measurements

10

H or 2H

‣ With discovery of ν oscillations (1998), 
suddenly require nuclear targets to get 
higher rates needed to nail osc. physics
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Put it in a nucleus - 12C

‣ MiniBooNE (and everyone else) uses the Relativistic Fermi Gas model (RFG)     
Nucl. Phys. B43, 605 (1972)

- Models nucleons as independent, quasi-free particles bound by a binding energy EB

- All outgoing nucleons subject to Pauli blocking.  Enforced by a global Fermi momentum pF

11

‣ Electron scattering data on 12C informs both EB, pF
G. Perdue

N N

e- e-

γ
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That’s it!

‣ RFG combines bare nucleon physics with a potential energy well and Pauli 
blocking.
- treats all spectator nucleons as entirely passive - nature may be much more interesting!

‣ We’ve seen evidence in recent years that this model is incomplete for GeV ν 
scattering in a nuclear environment

12

Fig. from Ann. Rev. Nucl. Part. Sci. 2011. 61:355–78
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Early days of MiniBooNE 

‣ Subsequent to understanding detector response and verifying reconstruction 
algorithms on variety of calibration data, we found surprises in this νμ CCQE 
channel (recall understanding this interaction is crucial for the νe appearance 
analysis)

1. Once a flux prediction obtained from dedicated hadroproduction data (more later), a 30% 
excess found relative to RFG

2. Disagreement in μ kinematics

13
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In principle, this 
could be due to 
either flux or 
cross section 
mismodeling 
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Early days of MiniBooNE 

‣ Subsequent to understanding detector response and verifying reconstruction 
algorithms on variety of calibration data, we found surprises in this νμ CCQE 
channel (recall understanding this interaction is crucial for the νe appearance 
analysis)

1. Once a flux prediction obtained from dedicated hadroproduction data (more later), a 30% 
excess found relative to RFG

2. Disagreement in μ kinematics

15

In principle, this 
could be due to 
either flux or 
cross section 
mismodeling 

Implies cross 
section is the 
likely culprit 
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‣ With more than 10x statistics of previous CCQE measurements combined, 
MiniBooNE can look at kinematics with unprecedented precision

μ kinematics 

16

✴Φ(Eν)

✴σ(Q2)

(broadly)

‣ Lines of kinematic 
discrepancy follow lines of 
Q2, not Eν

data/RFG
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‣ With more than 10x statistics of previous CCQE measurements combined, 
MiniBooNE can look at kinematics with unprecedented precision

μ kinematics 

17

something’s wrong 
with the RFG σ!

✴Φ(Eν)

✴σ(Q2)

(broadly)

‣ Lines of kinematic 
discrepancy follow lines of 
Q2, not Eν

data/RFG
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Looking for alternatives

‣ With the admission the RFG may be insufficient, we look to more modern 
calculations

18

‣ Find general theory 
consensus that RFG with 
MA ~ 1 GeV is about right 
- at least for the total σ

‣ In fact, most modern 
models predict nuclear 
effects suppress the σ, not 
enhance it!
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Finding a “solution” within the RFG

‣ Need to reproduce observed νμ CCQE in simulation to obtain a reliable         
νe CCQE prediction 

19

➡ Tuned MA and an 
empirical Pauli blocking

scale κ

MA = 1.35 ± 0.17 GeV

Phys. Rev. D81, 092005 (2010)

  

€ 

QQE
2 = −mµ

2 + 2Eν
QE (Eµ − pµ cosθµ )

This simultaneously fixed  
the muon kinematics 
problem and provided 

agreement with measured event 
rates 
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‣ MA ~ 1.3 GeV clearly disagrees with previous data, but MiniBooNE not alone in 
finding this tension 

‣ Published double-differential σ(Tμ, θμ), asked theorists for help

Axial Mass Tension

20

Maybe the physics model is wrong?  
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New interaction?

‣ 2009, first group to propose unification of apparently discrepant data sets 
Martini et al. 

21

“True CCQE”: MA ~ 1 GeV

enhancement

Phys. Rev. C80, 065001 (2009)

‣ Nuclear correlation effects in 12C result in a large enhancement                           

not present in light target                                                                 
experiments and indistinguishable                                                       
from “true CCQE” in MiniBooNE
- no selection on outgoing nucleons

(νμ + [n+p] → μ− + p + p)

n

νμ μ-

W

p

p

pπ
π
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Old interaction! 
Observed in (e,e’) data for decades

‣ JLAB observed analogous process in 
electron scattering data

‣ Nothing like this included in RFG!

‣ Something like this should be in ν scattering 
as well
- at least in the vector piece

22

‣ Some attempts to describe connection to ν scattering.  Axial enhancement?

e 

12C 
e’ 

p 

n 

Science 320, 1476 (2008)
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‣ No hint of this process in recent 12C experiment NOMAD: measured                
MA ~ 1 GeV with ~ 5% error for both νμ and νμ

Complications: job security?

23

‣ Trouble in comparing results: different energy ranges, different detector 
technologies, selection criteria, etc.
- have seen only a few calculations for correlated scattering > 2 GeV

L. Fields, NuInt2012

‣ Similar for recent 
MINERνA data: 
prelim. analyses 
for νμ, νμ events 
suggest             
MA ~ 1 GeV is 
sufficient

νμ νμ

Absolutely 
normalized
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 MiniBooNE dataµi
 indep. nuc. modelµi
 Martini et. alµi
 Amaro et. alµi
 Bodek et. alµi
 Nieves et. alµi
 Meucci et. al EDAIµi

Since 2009

‣ Confirmation from independent groups that something like the multi-nucleon 
mechanism can account for observed enhancement
- variety of different approaches represented here: parametrizations, extrapolations, and ab 

initio calculations

24

‣ Strong test of the underlying 
physics available with anti-
neutrinos
- probes a different mix of axial, 

vector σ pieces.  How might 
this new process contribute to 
anti-neutrino CCQE in 
MiniBooNE? 
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Since 2009

‣ Confirmation from independent groups that something like the multi-nucleon 
mechanism can account for observed enhancement
- variety of different approaches represented here: parametrizations, extrapolations, and ab 

initio calculations
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‣ Strong test of the underlying 
physics available with anti-
neutrinos
- probes a different mix of axial, 

vector σ pieces.  How might 
this new process contribute to 
anti-neutrino CCQE in 
MiniBooNE? 

- νμ predictions differ by as 
much as factor of two! 
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‣ Parity violation in weak interaction discovered same year as the ν  

➡ immediately implied reduction of ν cross sections by factor 2

‣ Resolution to this puzzle not likely to be as important, but will be crucial for 
current and next-generation oscillation experiments searching for CP violation

Another historical ν factor 2 cross section

26

No left-handed ν’s!
(light and active)

Fig. from Celebrating the Neutrino, LANL

Phys. Rev. 105, 1413 (1957)
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Primary CCQE result: σ(Tμ,θμ)

‣ Total cross section σ(Εν) extraction biased by interaction assumptions: only valid 
for interaction with at-rest, independently interacting nucleons
- the very question we must address!

27

‣ Much better idea:  report what we 
measure, double-differential 
σ(Tμ,θμ)
- also fully exploits MiniBooNE’s 

unprecedented statistics 

‣ Various levels of agreement with 
multi-nucleon predictions with 
double-differential σ

Phys. Rev. D81, 092005 (2010)

T. Katori
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Booster neutrino beam

29

Booster!

target and horn! detector!dirt !absorber!

primary beam! tertiary beam!secondary beam!
(protons)! (mesons)! (neutrinos)!

νµ  !

decay region!FNAL Booster!

π+ 

π+ π� 

π� 

Magnetic horn with reversible polarity focuses 
either neutrino or anti-neutrino parent 

mesons 

(“neutrino” vs “anti-neutrino” mode, much more later!) 
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‣ With measurements of

can predict ν, anti-ν flux at detector 

Neutrino flux

30

d2�

dp⇡d✓⇡
(p + Be! ⇡± + X)

Be p 

π+ π-"
‣ Dedicated π production data taken by 

HARP experiment (CERN)
- “thin target” results used (5% λ), thick target 

data also taken and actively being analyzed

‣ Spline fit to these data (along with beamline 
geometry simulation) brings ν flux 
uncertainty to ~9% 
- only valid for ν parent π’s constrained by these 

data - important later!

‣ Absolute Φ knowledge nearly model 
independent

HARP collaboration, 
Eur. Phys. J. C52 29 (2007) 

π- prod.
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Detector

‣ 6.1m radius sphere houses 800 
tons of pure mineral oil 

‣ Primarily a Cherenkov detector, 
best at reconstructing leptons

‣ However we’ve shown late light can 
be used to reconstruct protons 
well (neutral current elastic 
measurement)

31

Nucl. Instr. Meth. A599, 28 (2009)  
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ν-mode rate

‣ MiniBooNE has published 
~90% of the total ν-mode 
rate

‣ Lots of interest: more than 
500 citations from these 
papers in < 4 yrs!

32

QE 

NC EL 

CC π+ 

multi-π + 
CC π 0 NC π +/- NC π 0 other WS 

PRD 81, 092005 (2010) 
PRL 100, 032301 (2008) 

PRD 82, 092005 (2010) 

PRL 103, 
081801 (2009) 
PRD 83, 
052007 (2011) 

PRD 83, 052009 (2011) 
PRD 81, 013005 (2010) 

PL B664, 41 
(2008) 

Wrong sign (WS):
νμ in ν beam ~2%
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ν-mode rate

‣ Before able to make precision 
νμ σ’s, must deal with largest 
background: wrong-sign νμ

‣ Unprecedented ν statistics
- 1.0 x 1021 POT in an unexplored 

energy region

33

QE 

NC EL CC π- 

multi-π+ 

CC π0 

NC π+/- 

NC π0 

other 

WS ν 

PRD 81, 
013005 (2010) 

PRD 84, 072005 (2011)

Wrong sign:
νμ in ν beam ~40%!
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Wrong-sign background

‣ Even worse: νμ parent π+ production in 
ν mode (“wrong signs”) mostly not 
constrained by HARP measurements
- overall rate highly uncertain!

‣ Moreover, accepted π angle a mild 
function of energy 
- need to check flux spectrum! 

34
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Wrong-sign background
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‣ Even worse: νμ parent π+ production in 
ν mode (“wrong signs”) mostly not 
constrained by HARP measurements
- overall rate highly uncertain!

‣ Moreover, accepted π angle a mild 
function of energy 
- need to check flux spectrum! 
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Ratedata

Ratesim =
�data ⇥ �data

�sim ⇥ �data
=

�data

�sim

Wrong-sign measurements

‣ Other detectors employ magnetic field to separate CC νμ / νμ
- MiniBooNE unmagnetized, must use statistical techniques

‣ Never been done before, had to get creative!  General strategy: 
1.  exploit asymmetries between νμ, anti-νμ interactions in the detector

2.  apply measured σ’s from neutrino-mode data (CCQE, CCπ+) 

3.  level of data-simulation agreement then reflects accuracy of (highly-uncertain) νμ flux            
prediction

36

Ratedata

Ratesim =
�true � �

�sim � �
=

�true

�sim
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Three νμ flux measurements

‣ Three complementary measurements based on:

1.  νμ CCπ+ sample (exploits π- nuclear capture)

2.  μ-only and μ+e rates (exploits μ- nuclear capture)

3.  backward scattering region in CCQE sample (dominated by νμ)

37
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Three νμ flux measurements

‣ Three complementary measurements based on:

1.  νμ CCπ+ sample (exploits π- nuclear capture)

2.  μ-only and μ+e rates (exploits μ- nuclear capture)

3.  backward scattering region in CCQE sample (dominated by νμ)

‣ Could be used in current + future unmagnetized ν detectors
- future expt’s may be too big to be practically magnetized?

38

First measurement of the νµ content of a νµ beam using a 
non-magnetized detector.   

Phys. Rev. D81: 072005 (2011) 
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‣ From lepton and charge conservation, 
single-π production (mostly via Δ 
resonance) results in π+ for νμ, π- for νμ

CCπ+ sample

39

⌫̄µN ! µ+⇡�N

⌫µN ! µ�⇡+N
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µ�!

e- 

π+!

Ν!

Ν!

µ+!
e+ �µ

CCπ+ sample

40

⌫̄µN ! µ+⇡�N

⌫µN ! µ�⇡+N

‣ νμ process leads to three leptons 
above Cherenkov threshold

1. primary μ
2. decay positron

3. decay electron 

‣ From lepton and charge conservation, 
single-π production (mostly via Δ 
resonance) results in π+ for νμ, π- for νμ

Δ 
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Ν"

�̄µ
Δ 

~100% 
nuclear 
capture 

µ+"

π�"

e+ 

µ�"

e- 

π+"

Ν"

µ+"
e+ �µ

Ν"

Δ 

CCπ+ sample

41

⌫̄µN ! µ+⇡�N

⌫µN ! µ�⇡+N

‣ Due to π- nuclear capture                
(~100%), νμ single π process               
only has two

1. primary μ
2. decay positron

‣ Can do simple rate analysis on μ + 
2e sample to measure wrong signs!

‣ From lepton and charge conservation, 
single-π production (mostly via Δ 
resonance) results in π+ for νμ, π- for νμ
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μ- capture measurement

‣ Due to μ- nuclear capture (~8% in carbon) νμ CC events less likely to produce 
decay electrons compared to νμ

‣ Sample composition:

‣ Scale the two contributions to match data simultaneously in both samples 
- (two eqns, two unknowns)

42

νµ" νµ"

observe µ only 

observe µ+e 

µ only

data

=

�
↵⌫ ⌫µ only

+ ↵⌫̄ ⌫̄µ only

�
sim.

µ + edata =
�
↵⌫ ⌫µ+e + ↵⌫̄ ⌫̄µ+e

�
sim.

Thursday, February 21, 13



f
  Joe Grange  Nov. 30 2012  FNAL Joint Experimental-Theoretical  Seminar

µ!cos 
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‣ Due to axial-vector interference term in CCQE σ, νμ events expected to be 
much more forward-going compared to νμ
- perform simple fit to data in reconstructed energy bins

CCQE angular fits

43
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‣ Due to axial-vector interference term in CCQE σ, νμ events expected to be 
much more forward-going compared to νμ
- perform simple fit to data in reconstructed energy bins

CCQE angular fits

44

Ev
en

ts

Results dependent on νμ σ!
Results NOT USED to extract cross sections

Once σ’s better known, could be a powerful 
technique
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‣ Results binned in energy as finely as allowed by statistics
- nominal prediction ~20% high in normalization, simulated spectrum appears adequate

‣ Predicted νμ flux in ν mode constrained by < 15%.  Not bad with no magnetic field!

Wrong-sign flux results

45
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Wrong-sign Φ extrapolated
from hadroproduction data!  

~20% discrepancy with 
prediction not surprising
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Last word on ν-mode flux

‣ Wrong signs constrained to a sub-dominant uncertainty in all ν mode analyses

‣ Let’s move to ν events, where we can exploit HARP data

46
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‣ νμ CCQE only involves protons: MiniBooNE medium CH2, so sample is mix of 
bound and free scattering
- unlike νμ analysis:  all n targets housed in 12C 

νμ CCQE

47

µ!

e 

typical event - two “subevents”

e from μ decay

μ
�̄µ

µ+!

e+ 

p 
Either bound 
(12C) or quasi-

free (H) 

n 

no nucleon  
reconstruction 
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‣ μ kinematics identified by fitting PMT hit topology and timing

‣ μ’s leave distinctive Cherenkov ring,                                 
reconstruction performs well                                                       (  

‣ This motivates exploitation of our large                                            
statistics to map the σ as a function of μ kinematics

νμ CCQE reconstruction

48

μ kinetic energy 
resolution (%)

0.1

0.2

0.3

0.4

0.0

Nucl. Instrum. Meth. A608, 206 (2009)
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1.  Two subevents
- consistent with prompt μ + decay e

2.  In time with ν beam

3.  Tμ > 200 MeV
- removes beam-unrelated e’s

4.  2nd subevent vertex consistent                                          with decay of 
prompt particle
- based on observed μ kinematics

5.  μ/e separation PID
- single-pion bkgs look more e-like

6.  5m fiducial volume

7.  Low veto activity
- containment + nothing coming in

νμ CCQE selection

49

μ+

νμ

Identical selection to νμ CCQE analysis:
single μ, 0 π, any # nucleons
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νμ sample composition

‣ 70k events: 60% νμ CCQE purity
- largest νμ CCQE sample ever 

recorded!

‣ 30% efficiency

‣ Largest background:                  
νμ CCQE
- measured!

50

Process Contribution

(p from 12C)
43%

(p from H2)
17%

All νμ 20%

 CCπ- 14%

⌫µ + p! µ+ + n

⌫µ + p! µ+ + n
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‣ Calculation identical to νμ CCQE σ analysis

Cross-section calculation, uncertainties

51

d2�

dTµ d(cos✓µ)

=

P
j Uij(dj � bj)

�Tµ �(cos✓µ)✏i�T

d2�

dTµ d(cos✓µ)

=

P
j Uij(dj � bj)

�Tµ �(cos✓µ)✏i�T

unfolding matrix reco data reco bkg

detection efficiency int. flux

nucleon targetsbin widths

independent of physics model!
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Uncertainty summary

‣ Leading uncertainties: split between 
anti-neutrino flux and backgrounds

52

Error source Normalization 
uncertainty (%)

ν flux 9

Backgrounds 9

Detector 5

Unfolding 2

Total (includes 
correlations)

14

‣ Most uncertainties on parameters, 
processes that affect the final 
measurement evaluated through “many 
universe” MC method:

‣ Difference of these alternate σ’s from 
central-value sets systematic 
uncertainty  

k: parameter/process excursion from “best-guess”

d2�k

dTµ d(cos ✓µ)

=

P
j Uk

ij(dj � bk
j )

�Tµ�(cos ✓µ)✏k
i �

kT k
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Results: double-differential on CH2

‣ Least model-dependent measurement possible with MiniBooNE data.  Independent 
of CCQE interaction assumptions

53

2nd time 
publicly shown

preliminary
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‣ First time in ν history we’ve been able to make this kind of comparison

‣ νμ CCQE much more forward-going compared to νμ

‣ Consequence of parity violation: (ν - q) vs (ν - q) interactions:

Results: double-differential on CH2

54

νμ CCQE νμ CCQE

(in COM frame)
νp

s

q

No net spin Net spin: forward-going μ preferred

ν q
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νμ CCQE σ’s on 12C only

‣ To facilitate comparisons with theoretical calculations, CCQE on 
hydrogen subtracted to form 12C-only σ (using MA = 1.02 GeV)
- introduces model dependence,  also larger errors due to lower sample purity

55
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νμ CCQE σ’s on 12C only

‣ To facilitate comparisons with theoretical calculations, CCQE on 
hydrogen subtracted to form 12C-only σ (using MA = 1.02 GeV)
- introduces model dependence,  also larger errors due to lower sample purity
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total
 uncertainty

preliminary

Amaro et al.
.
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‣ Total σ(Eν) results: WARNING MODEL DEPENDENT 
- assumes independent, at-rest nucleon 

57

flux peak region

preliminary

νμ CCQE σ’s on 12C only

Phys Rev C81, 045502 (2010) Martini et al.:
Amaro et al.:
Bodek et al.:
Nieves et al.:
Meucci et al.:

arxiv: 1112.2123
Eur. Phys. J. C 71 1726 (2011)
Phys. Rev. C83 045501 (2011)
Phys. Rev. D85, 093002 (2012)
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(Anti) neutrino-nucleon neutral current elastic 
(NCE) scattering

‣ CCQE reconstruction based only on μ observations, NCE offers access to the 
hadronic side of the neutral-current version of this process

‣ Only possible due to scintillation light from mineral oil                            
impurities
- challenging!  first time done in                                                                              

(primarily) Cherenkov detector

‣ Represents work of                                                                                              

58

University of Alabama

R. Dharmapalan

⌫µN ! ⌫µN
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Nucleon reconstruction

‣ We measure sum of n+p NC interactions: identical isotropic scintillation 
signature for bulk of spectra

‣ Some separation above Cherenkov threshold (350 MeV)

59

‣ Dedicated fitter identifies 
kinematics via PMT hit charge and 
time-likelihood maximization 
- position res. ~0.7 m  

- energy res. ~20%
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Event selection

1.  One subevent
‣ removes decaying particles (μ, π)

2.  In time with ν beam

3.  Low veto activity
‣ ensures containment, rejects incoming                                               particles

4.  Signal PMT hits > 12
‣ reconstructible event

5.  Cut on time ln(Le/Lp) 
‣ rejects beam-unrelated e’s

6.  Reco. energy < 650 MeV
‣ rejects high E backgrounds

7.  5m fiducial volume

60

Exp’t def’n: 0 μ’s, 0 FS π’s, any # of nucleons
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NCE sample

‣ 61k events pass selection

- more than an order of 
magnitude larger than all 
other published νμ NCE 
data sets

61

Process Contribution

48%

All νμ 19%

“Dirt” 17%

NC π 14%

⌫̄µ + N ! ⌫̄µ + N

Constrained
by wrong-sign
 measurements

Dedicated background 
measurement

Irreducible bkg: 
NCπ with no final-state π
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Dirt background

‣ “Dirt”: events produced external to the detector, do not deposit energy in veto, 
lead to PMT activity

‣ Tend to pile up at:
- high radius 
- upstream half of detector
- low energy

‣ Form dirt-enriched samples based on                                                        
these correlations

62
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Dirt background

‣ Many, many measurements:

- 10 energy bins in the beam 
direction (Z) and radius (R)

- fit the energy spectrum 
directly (E)

- Results consistent with ν 
mode NCE dirt fits

- final uncertainty on dirt 
events less than 10%

63
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‣ Main result is dσ/dQ2.  Can calculate Q2 based on nucleon energy assuming 
interaction with an independent, at-rest target

‣ Simple σ calculation:

Cross-section calculation

64

d�

dQ2
=

P
j Uij(dj � bj)
�Q2✏i�T

d�

dQ2
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P
j Uij(dj ⇥ sj
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�Q2✏i�T

unfolding matrix reco data
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detection efficiency int. flux

nucleon targetsbin width

Q2 = 2mN

X
TN
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Systematic uncertainties

65

Error source Normalization 
uncertainty (%)

anti-ν flux 6

Backgrounds 6

Detector 15

Unfolding 7

Total (includes 
correlations)

21

Uncertainty dominated
by light propagation

model
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=

P
j Uk
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�Q2✏k
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Results

‣ Adequate normalization agreement with MC prediction (tuned to νμ CCQE data!)
‣ Some shape disagreement at mid-high Q2

66

preliminary

R. Dharmapalan
2nd time 

publicly shown
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1.    Introduction
ν cross sections in a single-detector oscillation exp’t

recent σ interest from MiniBooNE neutrino-mode data

2.    Anti-neutrino analyses
νμ background (wrong signs)

νμ NCE σ (new!)
νμ CCQE σ  (new!)

4.    Outlook and summary

67
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Future experimental tests

‣ These new anti-neutrino data beginning to tightly constrain models for 
proposed multi-nucleon mechanism, lots more work to be ready to meet next-
generation oscillation experiment needs
- experimentally and theoretically!

68

‣ Detailed experimental info already here and more coming from variety of 
detector technologies observing wide range of Eν (exactly what we need!)

- MINERνA (A-dependence!)
- ArgoNeuT
- NOνA
- T2K
- MINOS
- ICARUS
- MicroBooNE
- SciBooNE K. Partyka for ArgoNeuT, NuInt12 

21 MeV proton!

FNAL!
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Summary

‣ Experimental puzzle whose resolution may involve an unexpected interaction 
type may shed light on intranuclear dynamics

‣ New anti-neutrino NCE and CCQE σ results constrain many predictions for 
such a mechanism 

‣ Resolution crucial to understand for future oscillation experiments

‣ MiniBooNE has published > 90% of neutrino mode data, and today’s analyses 
bring the total in anti-neutrino mode to > 80%

‣ Papers from both analyses soon!

69
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Backup

70
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‣ Have done some preliminary analyses in MiniBooNE to estimate this effect

- results suggest much smaller effect than indicated above 
- uncertain if these np-nh events are truly present or not, no proper model exists to 

rigorously evaluate their effect

‣ Rigorous test: νe σ measurements with νSTORM

‣ Multiple theory groups claim the 
absence of multi-nucleon events in 
MiniBooNE MC significantly biases 
the νe oscillation results
- proposed effect: current reconstruction 

biases events towards lower energy  
➡would effect Δm2 extraction, change 

compatibility of data with osc. 
hypothesis

Impact on oscillation physics?

71

MiniBooNE low-E 
excess isn’t so “low”?

Martini et al. arXiv:1202.4745 
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Future experimental tests: MiniBooNE!

‣ New hadronic late light fitter gives model-independent measurement of Eν in 
CC inclusive measurement
- Does reco. Eν from hadronic light give larger values compared to that from lepton 

observations? Might expect so if multinucleon events were 40% of CC rate. 

72

‣ Merging of μ and proton fitter.
- if MiniBooNE uses “tracking style 

selection”  (1μ + 1p), does the νμ 
CCQE “excess” go away?

M. Tzanov, NuInt 2012

CC inclusive sample
(νμ + CH2→μ- + X)
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Comparison to NOMAD data

73
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‣ Under same assumptions on underlying interaction, can calculate “Q2QE”

‣ Again, data prefers higher normalization, harder spectrum compared to 
expectations with MA = 1.0 GeV 
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Shape comparison
preliminary

Absolute comparison
preliminary

νμ CCQE σ’s on 12C only

shape error total error
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μ+

νμ

‣ Robust MiniBooNE measurements:

‣ Can exploit correlated systematics:  
- detector errors: anti-νμ / νμ, same channel
- flux errors: NCE/CCQE in same beam

BooNE of data!

75

νμ CCQE
PRD 81, 092005 (2010)

νμ CCQE
This work

νμ NCE νμ NCE
PRD 82, 092005 (2010) This work

⎬ will show combined 
measurements of both types
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‣ Carefully evaluated correlated uncertainties implemented 
- biggest gain in light propagation model

NCE ratio: νμ / νμ

76

preliminary
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‣ Correlations not yet evaluated
- ratio measurement will only get better
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CCQE: νμ / νμ
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preliminary preliminary
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‣ Next round of osc. experiments will need robust knowledge of both ν and ν 
cross sections - current level of expectations for both:

‣ Worst-case scenario, could imagine lack of ν vs. ν cross section knowledge 
show up as spurious CP signal   

νμ / νμ σ predictions

78
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‣ Difference as a function of Q2QE

- again, correlations not yet taken into account

CCQE: νμ - νμ

79

preliminary

anti-νμ data:
hyd subtracted
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‣ Recall exp’t definitions of Q2QE very different here: hadronic vs. leptonic 
observations
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NCE/CCQE ratio for νμ, νμ

80

preliminary

νμ ratio:
PRD 82, 

092005 (2010)

Q2
QE,CCQE = 2EQE

⌫ (pµ cos ✓µ �mµ) + m2
µQ2

QE,NCE = 2mN

X
TN
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NCE dirt background

81

Example of radius fits in E bins
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CH2 comparison to RFG

‣ Data shape favors high effective axial 
mass
- data ~10% high of MA = 1.35 GeV

‣ Total uncertainty shown here
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‣ Small value of κ (1.007) does appreciably affect low Q2QE
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νμ sample composition
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Total σ: CH2
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Single-differential dσ/dQ2QE: CH2
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More model comparisons

‣ Not much shape sensitivity to model parameters

88

preliminary
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CCπ+ measurement

‣ Simply require two decay electrons after prompt μ, get a sample of ~80% νμ (wrong 
sign) interactions

89

‣ Data/simulation ratios in bins of 
reconstructed energy indicate the 
neutrino flux is over-predicted in 
normalization, while the simulated  
spectrum looks fine
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More π models

90

Phys. Rev. D 76, 033005 (2007).
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Consistency in neutral current elastic channel

‣ Neutral current elastic:  similar formalism to CCQE,

‣ Also sensitive to MA: fit to observations of nuclear recoil energy shape find     
MA = 1.39 ± 0.11 GeV 

91

⌫µN ! ⌫µN

Q2QE = 2mN ΣΤΝ 

Interesting to note, fits for MA 

consistent between CCQE (based
only on lepton activity) consistent with 
NCE (based only on hadronic activity) 

Phys. Rev. D82:092005 (2010)
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Determining EB, kF 

‣ EB for neutrino charged-current (ν + N → l± + N’) interactions distinct from 
neutral-current (e + N → e + N) EB, as separation energy between final, initial 
states are different  

92

±!

12C Excited State 12N Excited State 

E 

Electron Scattering to the Continuum ν,l- Quasi-elastic Scattering 

Common initial state (12C ground) 

Different final states 
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How much different?

‣ How much different?  The splitting can be estimated with the symmetry term in 
the semi-empirical mass formula:

‣ ES = 9 MeV for A = 12, Z = 7
- (CC interactions with n → p,  e.g. νμ CCQE)

‣ EB = 25 + 9 MeV = 34 MeV

93

(e,e’) data 
symmetry 
splitting 

ES(MeV) =
28(A� 2Z)2

A
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CCπ-

‣ Single-π bkg for νμ CCQE analysis:   ID’d 
CCπ+ events using 2-Michel tag
- empirically constrained their rate + shape, apply 

to bkg prediction

‣ Not possible in anti-ν mode: single-pion 
mechanism CC1π-, stopped π- absorbed in 
medium ~100%, 2nd Michel not produced

94
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Phys. Rev. D81, 092005 (2010)
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CCπ-

‣ Apply the same constraint measured in CCπ+ sample to CCπ- events
- uncertain extrapolation!

‣ Can do better: use improved π-production model that agrees with MB CCπ+ 
data as cross-check 
- improvements include muon mass effects (absent in nominal model)

95

J. Nowak, NuInt09Q2QE (GeV2)

CCπ+

Nominal prediction

Improved calculation
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Irreducible background

‣ Irreducible: NCπ with no final-state π, e.g.:

‣ Rely on MC to predict this background
- 30 - 40% errors assigned

‣ Will also report what was subtracted                                                            
to allow model-independent                                                           
comparisons
- following previous MiniBooNE                                                                        

conventions

96
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CCπ-

‣ Comparison to MiniBooNE predictions

‣ Level of agreement suggests 20% uncertainty is sufficient
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Wrong-sign background
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θπ

π

pz,π

pT,π
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